Należy podać wzór danej funkcji.
F(x) = -x + 4, f(x) = x – 4, f(x) = -x – 4, f(x) = x + 4
Jeżeli jest to trójkąt równoramienny, które boki tworzą obie osie, to jest to trójkąt prostokątny, więc jego wzór na pole to:
0,5 · y · y = 8
y² = 16
y = 4 (bok nie może być ujemny)
Taka prosta może przebiegać na 4 różne sposoby, z punktami na osiach = (-4, 0), (0, 4), (4, 0) oraz (0, -4). Będą się one różnić wyrazem wolnym (będzie to 4 lub -4) oraz współczynnikiem kierunkowym (1 oraz -1).
Ćwiczenie 5.
264Ćwiczenie 8.
266Ćwiczenie 9.
266Ćwiczenie 11.
267Zadanie 1.
267Zadanie 2.
268Zadanie 3.
268Zadanie 5.
268Zadanie 7.
268Zadanie 8.
268Zadanie 9.
268Zadanie 10.
269Zadanie 11.
269Zadanie 13.
269Ćwiczenie 1.
272Ćwiczenie 2.
274Ćwiczenie 3.
274Ćwiczenie 4.
275Ćwiczenie 6.
277Zadanie 1.
277Zadanie 2.
277Zadanie 3.
278Zadanie 4.
278Zadanie 6.
278Zadanie 7.
278Zadanie 9.
278Zadanie 10.
278Zadanie 11.
278Zadanie 12.
279Zadanie 13.
279Ćwiczenie 1.
281Ćwiczenie 2.
282Ćwiczenie 3.
282Ćwiczenie 5.
284Zadanie 1.
284Zadanie 2.
285Zadanie 3.
285Zadanie 4.
285Zadanie 5.
285Zadanie 6.
285Zadanie 7.
285Zadanie 8.
285Zadanie 9.
286Zadanie 10.
286Zadanie 11.
286Zadanie 12.
286Zadanie 13.
286Zadanie 14.
286Zadanie 1.
292Zadanie 2.
292Zadanie 3.
292Zadanie 4.
292Zadanie 5.
292Zadanie 6.
293Zadanie 7.
293Zadanie 8.
293Zadanie 9.
293Zadanie 10.
293Zadanie 12.
293Ćwiczenie 2.
297Ćwiczenie 3.
298Ćwiczenie 4.
299Zadanie 1.
300Zadanie 2.
301Zadanie 3.
301Zadanie 4.
301Zadanie 5.
301Zadanie 7.
301Zadanie 8.
301Zadanie 1.
306Zadanie 2.
306Zadanie 4.
307Zadanie 5.
307Zadanie 6.
307Zadanie 7.
307Zadanie 10.
308Zadanie 11.
308Zadanie 13.
308Zadanie 14.
309Zadanie 15.
309Zadanie 16.
309Zadanie zestaw 1 7.
312Zadanie zestaw 2 9.
313Zadanie zestaw 3 6.
313Zadanie zestaw 3 7.
314