Oblicz zestaw czterech danych, tworzących ciąg arytmetyczny, których średnia jest równa 5, zaś odchylenie standardowe zaokrąglone do całości wynosi 2.
Dla Dla
Skorzystaj z tego, że średnia arytmetyczna danego zestawu liczb jest ilorazem ich sumy przez ilość, wariancję danego zestaw danych można obliczyć ze wzorów: , a odchylenie standardowe jest pierwiastkiem z wariancji. Zauważ, że powstanie układ dwóch równań z dwoma niewiadomymi. Rozwiąż go i wyznacz z niego różnicę ciągu i wszystkie wyrazy.
Zadanie 2.1.
207Zadanie 2.2.
208Zadanie 2.3.
208Zadanie 2.4.
208Zadanie 2.6.
208Zadanie 2.8.
208Zadanie 2.9.
209Zadanie 2.11.
209Zadanie 2.12.
209Zadanie 2.18.
210Zadanie 3.5.
218Zadanie 3.7.
218Zadanie 3.8.
219Zadanie 3.10.
219Zadanie 3.14.
219Zadanie 5.15.
219Zadanie 3.18.
220Zadanie 3.20.
220Zadanie 3.25.
220Zadanie 4.7.
230Zadanie 4.8.
230Zadanie 4.10.
230Zadanie 4.13.
230Zadanie 4.14.
231Zadanie 4.15.
231Zadanie 4.16.
231Zadanie 4.18.
231Zadanie 4.19.
231Zadanie 4.23.
232Zadanie 4.25.
232Zadanie 4.27.
232Zadanie 4.28.
233Zadanie 5.7.
240Zadanie 8.1.
265Zadanie 8.5.
267Zadanie 8.8.
267Zadanie 8.10.
268Zadanie 8.11.
268Zadanie 8.13.
269Zadanie 8.18.
269Zadanie 9.2.
281Zadanie 9.3.
281Zadanie 9.5.
282Zadanie 9.6.
282Zadanie 44.
288Zadanie 46.
288Zadanie 52.
289Zadanie 58.
290