ODP.:
Zauważ, że 2 jest pierwiastkiem wielomianu. Więc
Podstaw te współrzędne w miejsce x i y, aby wyliczyć wartość m.
Przyrównaj każdą z wartości w nawiasie (również m) do zera, aby wyznaczyć rozwiązania tego równania.
Reszta z dzielenia wielomianu (x+1) jest równa 6. Więc
Podstaw te współrzędne w miejsce x i y, aby wyliczyć wartość m.
Zauważ, że 1 jest pierwiastkiem tego równania, ponieważ
Przyrównaj każdą z wartości w nawiasie do zera, aby wyznaczyć rozwiązania tego równania.
Oblicz dla jakich m pierwsze równanie jest równe 0.
Oblicz dla jakich m drugie równanie jest równe 0.
Oblicz deltę i miejsca zerowe.
Wspólne rozwiązanie obu równań jest szukaną wartością m.
Podstaw m pod równanie wielomianu.
Rozwiąż nierówność
Zauważ, że 2 jest pierwiastkiem tego równania, ponieważ
.
Przyrównaj każdą z wartości w nawiasie do zera, aby wyznaczyć rozwiązania tego równania.
Oblicz dla jakich x każde z równań jest równe zero.
Wylicz deltę i miejsca zerowe.
Zaznacz miejsca zerowe na osi, ramiona skieruj w górę, ponieważ współczynnik przy x z najwyższą potęgą jest dodatni. Zaznacz na niej argumenty, dla których wielomian przyjmuje wartości mniejsze lub równe zero, będzie to rozwiązanie nierówności.
Zapisz przedział rozwiązań nierówności.