Udowodnij, że jeśli
i
, to
.
Wyznacz rozwiązanie dwóch początkowych równań. Zauważ, że powstanie układ dwóch równań z dwoma niewiadomymi. Na tej podstawie wyznacz wartość współczynników
i
.
Następnie podstaw uzyskane liczby pod ostatnie równanie, skorzystaj z definicji logarytmu:
i oblicz wynik podanego działania.
Zadanie 2.1
23Zadanie 2.2
23Zadanie 2.3
23Zadanie 2.4
23Zadanie 2.5
23Zadanie 2.6
24Zadanie 2.7
24Zadanie 2.8
24Zadanie 2.9
24Zadanie 2.10
24Zadanie 2.11
25Zadanie 2.19
26Zadanie 2.20
26Zadanie 2.21
26Zadanie 2.22
26Zadanie 2.23
26Zadanie 2.24
26Zadanie 2.25
27Zadanie 2.26
27Zadanie 2.27
27Zadanie 2.28
27Zadanie 2.29
27Zadanie 2.31
27Zadanie 2.32
28Zadanie 2.33
28Zadanie 2.34
28Zadanie 2.35
28Zadanie 2.36
28Zadanie 2.37
28Zadanie 2.38
29Zadanie 2.39
29Zadanie 2.40
29Zadanie 2.41
29Zadanie 2.42
29Zadanie 2.43
29Zadanie 2.44
29Zadanie 2.45
30Zadanie 2.46
30Zadanie 2.47
30Zadanie 2.48
30Zadanie 2.49
30Zadanie 2.50
31Zadanie 2.51
31Zadanie 2.52
31Zadanie 2.53
31Zadanie 2.54
31Zadanie 2.55
31Zadanie 2.56
32Zadanie 2.57
32Zadanie 2.58
32Zadanie 2.59
33Zadanie 11
34Zadanie 13
35Zadanie 14
35Zadanie 15
35Zadanie 16
35Zadanie 17
35Zadanie 18
35Zadanie 26
36Zadanie 27
36