W tym zadaniu musisz wyznaczyć ekstrema lokalne funkcji.
Funkcja ma jedno ekstremum lokalne, dla:
Zauważ, żepodana funkcja nie jest różniczkowalna w punkcie zero, ale ma minimum lokalne (szpic).
Zadanie 1.
288Zadanie 2.
288Zadanie 3.
288Zadanie 4.
288Zadanie 1.
292Zadanie 2.
288Zadanie 3.
292Zadanie 1.
296Zadanie 2.
296Zadanie 3.
296Zadanie 4.
296Zadanie 1.
300Zadanie 2.
300Zadanie 3.
300Zadanie 4.
300Zadanie 5.
300Zadanie 6.
300Zadanie 7.
300Ćwiczenie 1.
302Ćwiczenie 2.
304Ćwiczenie 3.
305Zadanie 1.
306Zadanie 2.
306Zadanie 3.
306Zadanie 4.
306Zadanie 5.
306Zadanie 1.
311Zadanie 2.
311Zadanie 3.
311Zadanie 1.
319Zadanie 3.
319Ćwiczenie 3.
323Zadanie 1.
326Zadanie 2.
326Zadanie 3.
326Zadanie 4.
326Zadanie 1.
335Zadanie 2.
335Zadanie 3.
335Zadanie 4.
335Ćwiczenie 2.
342Zadanie 1.
344Zadanie 2.
344Zadanie 3.
344Zadanie 4.
344Zadanie 5.
344Zadanie 6.
344Ćwiczenie 2.
349Zadanie 1.
352Zadanie 2.
352Zadanie 3.
352Zadanie 4.
352Zadanie 7.
352Zadanie 5.
363Zadanie 6.
363Zadanie 7.
363Zadanie 8.
363Ćwiczenie 2.
370Zadanie 1.
372Zadanie 4.
373Zadanie 5.
373Zadanie 6.
373Zadanie 8.
373Zadanie 12.
373Ćwiczenie 2.
376Zadanie 1.
379Zadanie 2.
379Zadanie 4.
379Zadanie 5.
379Zadanie 14.
389Zadanie 18.
389Zadanie 19.
389Zadanie 20.
389