W tym zadaniu wyznacz równania prostej l będącej obrazem prostej k w symetrii względem osi OX oraz prostej m obrazem prostej k w symetrii względem osi OY, wiedząc, że prosta k jest symetralną odcinka AB.
A(0,6), B(4,–2)
aAB =
Prosta k ma zatem współczynnik kierunkowy prostej a =
. Należy do niej środek odcinka AB:
SAB
= (2, 2)
Prosta k ma postać:
y =
x + b
2 =
· 2 + b
b = 1
Prosta k: y =
x + 1
Prosta l: y = –(
x + 1) =
x – 1
Prosta m: y =
· (–x) + 1 =
x + 1
W celu wyznaczenia współczynnika kierunkowego prostej y = ax + b przechodzącej przez punkty (x1, y1) i (x2, y2), gdzie x1≠ x2, wykorzystaj wzór
. Dwie proste są prostopadłe, gdy a1 · a2 = –1. Skorzystaj ze wzoru na środek odcinka AB o końcach w punktach A(x1, y1) i B(x2, y2), który wygląda następująco:
. Punktem symetrycznym do punktu P(x, y) względem osi OX układu współrzędnych jest punkt P’(x, –y). Punktem symetrycznym do punktu P(x, y) względem osi OY układu współrzędnych jest punkt P’’(–x, y).
Zadanie 1.
54Zadanie 2.
54Zadanie 4.
54Zadanie 5.
54Ćwiczenie 1.
55Ćwiczenie 4.
56Ćwiczenie 5.
56Zadanie 2.
56Zadanie 3.
56Zadanie 4.
56Zadanie 5.
56Zadanie 6.
56Zadanie 7.
56Zadanie 10.
56Zadanie 12.
56Zadanie 13.
56Ćwiczenie 1.
58Ćwiczenie 2.
58Ćwiczenie 3.
59Zadanie 1.
59Zadanie 2.
59Zadanie 3.
59Zadanie 5.
59Zadanie 6.
60Zadanie 8.
60Zadanie 9.
60Zadanie 10.
60Zadanie 11.
60Zadanie 13.
60Zadanie 14.
60Zadanie 2.
61Zadanie 3.
61Zadanie 4.
61Zadanie 5.
61Zadanie 6.
61Zadanie 7.
61Ćwiczenie 1.
62Ćwiczenie 2.
63Ćwiczenie 3.
63Ćwiczenie 5.
64Zadanie 1.
64Zadanie 4.
64Zadanie 5.
65Zadanie 6.
65Zadanie 7.
65Zadanie 8.
65Zadanie 9.
65Zadanie 10.
65Zadanie 11.
65Zadanie 1.
66Ćwiczenie 1.
67Ćwiczenie 3.
67Ćwiczenie 4.
68Ćwiczenie 5.
68Ćwiczenie 6.
69Ćwiczenie 7.
69Ćwiczenie 8.
69Ćwiczenie 9.
69Zadanie 1.
70Zadanie 2.
70Zadanie 3.
70Zadanie 5.
70Zadanie 6.
70Zadanie 7.
70Zadanie 9.
70Zadanie 10.
70Zadanie 11.
70Zadanie 12.
70Zadanie 13.
70Zadanie 15.
71Ćwiczenie 1.
72Ćwiczenie 2.
73Zadanie 1.
74Zadanie 2.
74Zadanie 3.
74Zadanie 6.
74Zadanie 1.
75Ćwiczenie 1.
76Ćwiczenie 2.
77Ćwiczenie 3.
77Zadanie 1.
78Zadanie 2.
78Zadanie 3.
78Zadanie 5.
78Zadanie 6.
78Ćwiczenie 1.
80Ćwiczenie 2.
81Ćwiczenie 3.
81Ćwiczenie 4.
81Zadanie 1.
82Zadanie 2.
82Zadanie 3.
82Zadanie 4.
82Zadanie 5.
82Zadanie 6.
82Zadanie 7.
82Zadanie 8.
82Ćwiczenie 1.
83Ćwiczenie 2.
83Zadanie 1.
85Zadanie 3.
85Zadanie 4.
85Zadanie 5.
85Zadanie 6.
85Zadanie 7.
85Ćwiczenie 1.
86Ćwiczenie 2.
87Zadanie 1.
88Zadanie 5.
88Zadanie 6.
88Ćwiczenie 1.
89Ćwiczenie 2.
89Ćwiczenie 3.
90Ćwiczenie 4.
90Ćwiczenie 5.
91Ćwiczenie 6.
91Zadanie 1.
92Zadanie 5.
92Zadanie 6.
92Zadanie 7.
92Ćwiczenie 1.
93Ćwiczenie 3.
94Ćwiczenie 4.
94Ćwiczenie 5.
94Ćwiczenie 7.
94Zadanie 1.
95Zadanie 2.
95Zadanie 3.
95Zadanie 4.
96Zadanie 5.
96Zadanie 6.
95Zadanie 7.
96Zadanie 8.
96Zadanie 9.
96Ćwiczenie 1.
97Ćwiczenie 3.
98Ćwiczenie 4.
98Ćwiczenie 6.
99Ćwiczenie 7.
99Zadanie 1.
99Zadanie 2.
99Zadanie 4.
99Zadanie 7.
101Zadanie 8.
100Zadanie 9.
100Zadanie 1.
101Zadanie 2.
101Zadanie 3.
103Zadanie 4.
103Zadanie 1.
104Zadanie 2.
104Zadanie 3.
104Zadanie 4.
104Zadanie 5.
104Zadanie 6.
104Zadanie 7.
104Zadanie 8.
104Zadanie 9.
105Zadanie 10.
105Zadanie 11.
105Zadanie 12.
105Zadanie 13.
105Zadanie 14.
105Zadanie 1.
106Zadanie 2.
106Zadanie 3.
106Zadanie 4.
106Zadanie 5.
106Zadanie 6.
106Zadanie 7.
106Zadanie 8.
106Zadanie 9.
106Zadanie 11.
107Zadanie 12.
107Zadanie 13.
107Zadanie 14.
107Zadanie 15.
106Zadanie 16.
107