Jeśli wykres funkcji y = sin α odbijemy symetrycznie względem pewnej prostej (która jest równoległa do osi y i do której należy punkt o współrzędnych (45°, 0)) otrzymamy cosinusoidę. Znajdź wszystkie takie proste, wiedząc dodatkowo, że pierwsza współrzędna punktu przecięcia z osią odciętych mieści się w przedziale (-360°; 360°).
Prosta, o której mowa w zadaniu jest równoległa do osi y oraz przecina oś x w punkcie (45°, 0). Jej równanie ma zatem postać: x = 45°.
Bazując na powyższym wykresie, zauważ, że jeśli sinusoidę odbijemy względem przedstawionej prostej, powstały wykres pokryje się z wykresem funkcji y = cos α.
Zależność tą spełniają wszystkie proste równoległe do osi y, które przechodzą przez punkt przecięcia się wykresów obu funkcji.
Odczytaj z powyższego rysunku kąty, dla których oba wykresy się przecinają:
sin α = cos α gdy
Zatem szukane proste mają postać:
Na podstawie informacji z treści zadania wyznacz wzór jednej z rozpatrywanych prostych: x = 45°.
W jednym układzie współrzędnych naszkicuj wykres funkcji sin α, cos α oraz wyznaczoną prostą.
Przeanalizuj rysunek i zauważ, że aby rozpatrywana zależność była spełniona, szukana prosta musi być równoległa do osi y i musi przechodzić przez punkt przecięcia się sinusoidy i cosinusoidy.
Wyznacz kąty (należące do przedziału (-360°; 360°)), dla których wykresy funkcji y = sin α oraz y = cos α przecinają się.
Szukane proste mają postać: x = α0, gdzie α0 jest wyznaczonym wcześniej kątem.
Ćwiczenie B.
146Zadanie 1.
147Zadanie 2.
148Zadanie 3.
148Zadanie 4.
148Zadanie 5.
148Zadanie 6.
148Zadanie 7.
148Ćwiczenie C.
151Zadanie 1.
151Zadanie 2.
151Zadanie 3.
151Zadanie 4.
152Zadanie 5.
152Zadanie 6.
152Zadanie 7.
152Zadanie 8.
152Zadanie 9.
152Ćwiczenie C.
154Zadanie 1.
156Zadanie 2.
156Zadanie 5.
156Zadanie 6.
156Zadanie 7.
157Zadanie 8.
157Zadanie 9.
157Zadanie 10.
157Zadanie 11.
157Zadanie 12.
157Zadanie 13.
157Zadanie 15.
158Zadanie 16.
158Zadanie 1.
160Zadanie 2.
160Zadanie 3.
161Zadanie 4.
161Zadanie 5.
161Zadanie 6.
161Zadanie 7.
161Zadanie 8.
161Zadanie 9.
161Zadanie 10.
161Ćwiczenie B.
164Ćwiczenie C.
165Zadanie 1.
165Zadanie 2.
166Zadanie 4.
166Zadanie 5.
166Zadanie 6.
166Zadanie 7.
166Ćwiczenie A.
168Zadanie 1.
170Zadanie 2.
170Zadanie 3.
170Zadanie 4.
170Zadanie 7.
171Zadanie 8.
171Zadanie 10.
171Zadanie 11.
171Zadanie 1.
174Zadanie 2.
174Zadanie 3.
174Zadanie 4.
174Zadanie 1.
179Zadanie 2.
179Zadanie 3.
179Zadanie 4.
179Zadanie 5.
179Zadanie 6.
180Zadanie 7.
180Zadanie 8.
180Zadanie 9.
180Zadanie 10.
180Zadanie 11.
180Zadanie 12.
180Zadanie 13.
180Zadanie 14.
180Zadanie 15.
180Zadanie 17.
181Zadanie 18.
181Przykład 1.
184Zadanie 1.
184Zadanie 3.
185Zadanie 5.
185Zadanie 6.
185Zadanie 7.
185Zadanie 8.
185Zadanie 9.
185Ćwiczenie B.
187Ćwiczenie C.
187Zadanie 1.
190Zadanie 2.
190Zadanie 3.
191Zadanie 4.
191Zadanie 6.
191Zadanie 7.
191Zadanie 8.
192Zadanie 9.
192Zadanie 10.
192Zadanie 11.
192Zadanie 12.
192Zadanie 13.
192Zadanie 14.
193Zadanie 15.
193Zadanie 16.
193Zadanie 17.
193Zadanie 18.
193Zadanie 1.
196Zadanie 2.
196Zadanie 3.
196Zadanie 5.
197Zadanie 6.
197Zadanie 7.
197Zadanie 8.
197Przykład 1.
200Ćwiczenie C.
202Przykład 7.
205Przykład 8.
206Zadanie 1.
207Zadanie 2.
207Zadanie 3.
207Zadanie 4.
207Zadanie 5.
207Zadanie 6.
207Zadanie 7.
207Zadanie 8.
207Zadanie 9.
207Zadanie 10.
208Zadanie 11.
208Zadanie 12.
208Zadanie 13.
208Zadanie 14.
208Zadanie 15.
208Zadanie 1.
212Zadanie 2.
212Zadanie 3.
212Zadanie 4.
212Zadanie 5.
212Zadanie 6.
212Zadanie 7.
212Zadanie 8.
212Zadanie 9.
213Zadanie 10.
213Zadanie 11.
213Zadanie 12.
213Zadanie 13.
213Zadanie 14.
213Zadanie 1.
214Zadanie 2.
214Zadanie 3.
214Zadanie 6.
214Zadanie 7.
214Zadanie 8.
214Zadanie 11.
214Zadanie 12.
214Zadanie 13.
214Zadanie 14.
214Zadanie 15.
214