W tym zadaniu musisz znaleźć wysokość prostopadłościanu, znając wymiary podstawy i powierzchnię bryły, a następnie obliczyć jego objętość.
Pole powierzchni kwadratowej ściany: 5 dm · 5 dm = 25 dm2
Pole powierzchni czterech prostokątnych ścian: 170 dm2 – 2 · 25 dm2 = 170 dm2 – 50 dm2 = 120 dm2
Pole powierzchni jednej prostokątnej ściany: 120 dm2 : 4 = 30 dm2
Wymiary prostokątnej ściany: 30 dm2 = 4 dm · 6 dm
Objętość prostopadłościanu: 5 dm · 5 dm · 6 dm = 150 dm3
Odpowiedź: C. 150 dm3
Do zadania najprawdopodobniej wkradł się błąd: w odpowiedziach jednostką objętości powinny być dm3. Rozwiązywanie zadania rozpocznij od wyliczenia powierzchni dwóch kwadratowych ścian. Po odjęciu ich od powierzchni bryły otrzymasz pole czterech prostokątnych ścian – podziel wynik przez 4. Znasz powierzchnię prostokąta – znajdź drugi bok, by ich iloczyn był poprawny. Teraz masz już wszystkie wymiary prostopadłościanu (długość i szerokość to boki kwadratu, a wysokość to drugi bok prostokąta), mnóż je przez siebie, by poznać jego objętość.
Zadanie 1.
5Zadanie 2.
5Zadanie 3.
6Zadanie 4.
6Zadanie 5.
8Zadanie Co było na lekcji 5
10Zadanie 2.
11Zadanie 3.
12Zadanie 4.
12Zadanie 5.
12Zadanie 6.
12Zadanie 12.
15Zadanie 5.
17Zadanie 7.
18Zadanie 8.
19Zadanie 3.
25Zadanie 4.
26Zadanie 5.
27Zadanie 6.
27Zadanie 1.
31Zadanie 2.
31Zadanie 4.
32Zadanie 5.
33Zadanie Co było na lekcji 8
35Zadanie 1.
37Zadanie 4.
40Zadanie 5.
41Zadanie 6.
41Zadanie Co było na lekcji 5
42