W tym zadaniu oblicz odchylenia standardowe zestawów liczb A i B oraz sformułuj wniosek.
A: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4
B: 11, 12, 12, 13, 13, 13, 14, 14, 14, 14
A:
=
σ =
= 1
B:
=
σ =
= 1
Możemy zauważyć, że w zestawie B zwiększono wartości liczb, dodając do liczb z zestawu A 10. Zatem jeżeli wszystkie liczby z danego zestawu danych zwiększymy o stałą wartość, to odchylenie standardowe nie ulegnie zmianie.
Odchylenie standardowe jest to pierwiastek z wariancji. Odchyleniem standardowym liczb x1, x2, …, xn nazywamy liczbę σ określoną za pomocą wzoru: σ =
. Średnią arytmetyczną n liczb: x1, x2, …, xn nazywamy liczbę:
, gdzie x1, x2, …, xn to kolejne liczby, natomiast n oznacza ilość liczb w danym zestawie danych.
Ćwiczenie 5.
173Zadanie 2.
174Zadanie 3.
174Zadanie 4.
174Zadanie 5.
174Zadanie 6.
175Zadanie 8.
175Zadanie 10.
175Ćwiczenie 1.
176Ćwiczenie 2.
176Ćwiczenie 4.
176Ćwiczenie 6.
178Ćwiczenie 7.
178Ćwiczenie 9.
179Zadanie 1.
179Zadanie 3.
180Zadanie 4.
179Zadanie 5.
181Zadanie 7.
181Ćwiczenie 1.
183Zadanie 1.
185Zadanie 5.
185Zadanie 6.
185Zadanie 7.
185Zadanie 8.
185Zadanie 9.
185Zadanie 1.
188Zadanie 3.
188Ćwiczenie 1.
189Ćwiczenie 2.
189Ćwiczenie 3.
190Ćwiczenie 4.
190Zadanie 3.
191Zadanie 4.
191Zadanie 5.
191Zadanie 6.
191Zadanie 1.
193Zadanie 6.
194Zadanie 2.
194Zadanie 5.
195