Udowodnij, że w trójkącie o równych ramionach środkowe poprowadzone do równych boków są równe.
Skoro jest to trójkąt równoramienny to:
, więc z cechy BKB trójkąty BCE i BCD są przystające, więc środkowe |EC| i |BD| są równe. Co kończy dowód.
Musisz skorzystać z własności środkowych (dzielą bok na dwie równe części).
Zadanie 5.
300Zadanie 6.
300Zadanie 7.
300Zadanie 8.
300Zadanie 5.
305Zadanie 6.
305Zadanie 1.
308Zadanie 2.
309Zadanie 3.
309Zadanie 4.
309Zadanie 1.
308Zadanie 2.
315Zadanie 4.
315Zadanie 5.
315Zadanie 6.
315Zadanie 7.
315Zadanie 8.
315Zadanie 9.
315Zadanie 14.
315Zadanie 2.
319Zadanie 3.
319Zadanie 4.
319Zadanie 5.
319Zadanie 1.
326Zadanie 2.
326Zadanie 5.
326Zadanie 9.
326Zadanie 10.
326Zadanie 11.
326Zadanie 1.
330Zadanie 2.
330Zadanie 9.
331Zadanie 10.
331Zadanie 11.
331Zadanie 12.
331Zadanie 1.
337Zadanie 4.
338Zadanie 5.
338Zadanie 6.
338Zadanie 7.
338Zadanie 8.
338Zadanie 9.
338Zadanie 10.
338Zadanie 11.
338Zadanie 1.
351Zadanie 2.
351Zadanie 3.
351Zadanie 4.
352Zadanie 5.
352Zadanie 6.
352Zadanie 9.
352Zadanie 1.
363Zadanie 2.
363Zadanie 3.
363Zadanie 6.
363Zadanie 10.
365Zadanie 11.
365Zadanie 15.
365