W tym zadaniu musisz udowodnić metodą wprost, że liczba trzycyfrowa jest podzielna przez 3 wtedy i tylko wtedy, gdy suma jej cyfr jest podzielna przez 3.
x – cyfra setek liczby, gdzie
y – cyfra dziesiątek liczby,
z – cyfra jedności liczby,
Liczba trzycyfrowa:
Aby liczba ta była podzielna przez 3, to
musi być podzielne przez 3.
jest sumą setek, dziesiątek i jedności.
Wyrażenie
jest podzielne przez 3, ponieważ jest iloczynem 3 i pewnej liczby całkowitej, więc dzieląc je na 3 otrzymamy resztę równą 0. Skoro wiemy, że wyrażenie
jest podzielne przez 3, to żeby całe wyrażenie
było podzielne przez 3, to suma
musi być podzielna przez 3.
Przykład 1.
29Zadanie 2.
29Zadanie 3.
29Zadanie 4.
29Zadanie 5.
29Zadanie 6.
30Zadanie 7.
30Zadanie 8.
30Zadanie 10
30Zadanie 11.
31Zadanie 12.
31Zadanie 13.
31Zadanie 14.
31Ćwiczenie A.
32Przykład 1.
32Ćwiczenie B.
33Przykład 2.
33Przykład 3.
33Zadanie 1.
33Zadanie 2.
33Zadanie 3.
34Zadanie 4.
34Zadanie 5.
34Zadanie 6.
34Zadanie 7.
34Zadanie 8.
34Zadanie 9.
34Zadanie 10.
34Zadanie 11.
34Zadanie 13.
35Zadanie 14.
35Zadanie 15.
35Przykład 17.
35Zadanie 18.
35Ćwiczenie A.
36Przykład 1.
37Przykład 2.
37Przykład 3.
38Przykład 4.
38Zadanie 1.
39Zadanie 2.
39Zadanie 3.
40Zadanie 4.
40Zadanie 8.
40Zadanie 9.
40Zadanie 10.
40Zadanie 11.
40Zadanie 12.
40Zadanie 13.
41Zadanie 14.
41Zadanie 15.
41Zadanie 17.
41Zadanie 18.
41Zadanie 19.
41Zadanie 20.
41Zadanie 21.
41Przykład 1.
43Zadanie 1.
43Zadanie 2.
43Zadanie 3.
43Zadanie 4.
44Zadanie 6.
44Zadanie 7.
44Zadanie 8.
44Zadanie 1.
50Zadanie 2.
50Zadanie 3.
50Zadanie 4.
50Zadanie 5.
50Zadanie 6.
50Zadanie 7.
50Zadanie 8.
50Zadanie 9.
51Zadanie 12.
51Zadanie 1.
52Zadanie 2.
52Zadanie 3.
52Zadanie 4.
52Zadanie 5.
52Zadanie 6.
52Zadanie 7.
52Zadanie 9.
52Zadanie 10.
52