W tym zadaniu musisz wyznaczyć wszystkie wartości parametru t, dla których równanie
ma jedno rozwiązanie dodatnie, korzystając z własności wyróżnika
.
Delta musi być równa
.
Jeżeli równanie kwadratowe ma jedno rozwiązanie to wyraża się ono wzorem
I skoro ma być ujemne to
Więc odrzucamy rozwiązanie
Rozwiązaliśmy równanie
, żeby wyliczyć dla jakich wartości parametru równanie ma jedno rozwiązanie oraz nałożyliśmy dodatkowy warunek dotyczący znaku miejsca zerowego.
Ćwiczenie C.
237Zadanie 3.
239Zadanie 4.
239Zadanie 6.
240Zadanie 7.
240Ćwiczenie 8.
240Zadanie 9.
240Zadanie 10.
240Zadanie 11.
240Zadanie 12.
240Zadanie 13.
240Zadanie 1.
245Zadanie 4.
246Zadanie 5.
246Zadanie 7.
246Zadanie 8.
246Zadanie 9.
246Zadanie 10.
246Zadanie 11.
242Ćwiczenie D.
248Zadanie 1.
249Zadanie 2.
249Zadanie 3.
250Zadanie 4.
250Zadanie 5.
250Zadanie A.
252Ćwiczenie B.
253Ćwiczenie C.
254Zadanie 1.
254Zadanie 2.
254Zadanie 3.
254Zadanie 4.
255Zadanie 5.
255Zadanie 7.
255Zadanie 8.
255Zadanie 10.
256Zadanie 11.
256Zadanie 12.
256Zadanie 13.
256Ćwiczenie A.
257Zadanie 1.
259Zadanie 2.
259Zadanie 3.
259Zadanie 4.
259Zadanie 5.
260Zadanie 6.
260Zadanie 7.
260Zadanie 8.
260Zadanie 9.
260Zadanie 12.
260Zadanie 15.
261Zadanie 1.
263Zadanie 2.
263Zadanie 3.
264Zadanie 4.
264Zadanie 5.
264Zadanie 1.
269Zadanie 2.
270Zadanie 3.
270Zadanie 4.
270Zadanie 6.
270Zadanie 7.
270Zadanie 8.
270Zadanie 10.
271Zadanie 11.
271Zadanie 14.
271Zadanie 15.
271Zadanie 17.
271Zadanie 18.
271Zadanie 19.
272Zadanie 20.
272Zadanie 25.
272Zadanie 2.
274Zadanie 3.
274Zadanie 4.
274Zadanie 5.
274Zadanie 9.
274Zadanie 10.
274