W tym zadaniu należy zwrócić uwagę na to, że długość siatki musi być równa sumie 3 boków prostokątnego placu, tzn. np.
. Następnie Wykorzystując to założenie należy znaleźć współrzędne wierzchołka paraboli
.
Więc:
Ze wzoru na pole prostokąta:
Wstawiając do wzoru nasze
otrzymujemy następujące równanie:
Największe pole funkcja P(x) przyjmie dla
będącego współrzędną wierzchołka paraboli:
Więc pole placu będzie największe dla
i
Wniosek: Plac ten będzie miał największe pole, gdy jego boki będą miały długości:
W tym zadaniu skorzystaliśmy z zależności między bokami prostokąta a całkowitą długością siatki, żeby znaleźć funkcję pola od któregoś z boków.
Ćwiczenie C.
237Zadanie 3.
239Zadanie 4.
239Zadanie 6.
240Zadanie 7.
240Ćwiczenie 8.
240Zadanie 9.
240Zadanie 10.
240Zadanie 11.
240Zadanie 12.
240Zadanie 13.
240Zadanie 1.
245Zadanie 4.
246Zadanie 5.
246Zadanie 7.
246Zadanie 8.
246Zadanie 9.
246Zadanie 10.
246Zadanie 11.
242Ćwiczenie D.
248Zadanie 1.
249Zadanie 2.
249Zadanie 3.
250Zadanie 4.
250Zadanie 5.
250Zadanie A.
252Ćwiczenie B.
253Ćwiczenie C.
254Zadanie 1.
254Zadanie 2.
254Zadanie 3.
254Zadanie 4.
255Zadanie 5.
255Zadanie 7.
255Zadanie 8.
255Zadanie 10.
256Zadanie 11.
256Zadanie 12.
256Zadanie 13.
256Ćwiczenie A.
257Zadanie 1.
259Zadanie 2.
259Zadanie 3.
259Zadanie 4.
259Zadanie 5.
260Zadanie 6.
260Zadanie 7.
260Zadanie 8.
260Zadanie 9.
260Zadanie 12.
260Zadanie 15.
261Zadanie 1.
263Zadanie 2.
263Zadanie 3.
264Zadanie 4.
264Zadanie 5.
264Zadanie 1.
269Zadanie 2.
270Zadanie 3.
270Zadanie 4.
270Zadanie 6.
270Zadanie 7.
270Zadanie 8.
270Zadanie 10.
271Zadanie 11.
271Zadanie 14.
271Zadanie 15.
271Zadanie 17.
271Zadanie 18.
271Zadanie 19.
272Zadanie 20.
272Zadanie 25.
272Zadanie 2.
274Zadanie 3.
274Zadanie 4.
274Zadanie 5.
274Zadanie 9.
274Zadanie 10.
274