Wyznacz pole powierzchni całkowitej i objętość graniastosłupa prawidłowego czworokątnego, którego przekątna ma długość 14 cm, jeśli kąt nachylenia tej przekątnej do płaszczyzny podstawy jest równy 60°.
Zauważ, że trójkąt prostokątny o kątach
jest szczególny - długość boku naprzeciwko największego kąta jest dwa razy większa od długości boku naprzeciwko najkrótszego kąta, a długość boku naprzeciwko średniego kąta jest
razy dłuższa od długości boku naprzeciwko najmniejszego kąta. Na tej podstawie oblicz długość krawędzi podstawy i przekątnej ściany bocznej graniastosłupa. Następnie skorzystaj z twierdzenia Pitagorasa, aby obliczyć długość krawędzi bocznej, a na koniec wyznacz jego pole całkowite i objętość.
Zadanie 5.1
78Zadanie 5.2
78Zadanie 5.4
78Zadanie 5.5
78Zadanie 5.6
79Zadanie 5.7
79Zadanie 5.8
79Zadanie 5.35
84Zadanie 5.37
84Zadanie 5.39
84Zadanie 5.40
84Zadanie 5.41
85Zadanie 5.42
85Zadanie 5.45
85Zadanie 5.46
85Zadanie 5.47
86Zadanie 5.50
86Zadanie 5.53
86Zadanie 5.55
87Zadanie 5.56
87Zadanie 5.57
87Zadanie 5.58
87Zadanie 5.60
87Zadanie 5.62
87Zadanie 5.63
88Zadanie 5.64
88Zadanie 5.65
88Zadanie 5.66
88Zadanie 5.67
88Zadanie 5.68
88Zadanie 5.69
88Zadanie 5.70
88Zadanie 5.71
89Zadanie 5.72
89Zadanie 5.73
89Zadanie 5.74
89Zadanie 5.75
89Zadanie 5.76
89Zadanie 5.77
90Zadanie 5.78
90Zadanie 5.79
90Zadanie 5.80
90Zadanie 5.81
91Zadanie 5.82
91Zadanie 5.83
91Zadanie 5.85
91Zadanie 5.86
92Zadanie 5.87
92Zadanie 5.88
92Zadanie 5.100
93Zadanie 5.102
94Zadanie 5.107
94Zadanie 5.112
95Zadanie 5.119
96Zadanie 5.120
96Zadanie 5.122
96Zadanie 5.127
97Zadanie 5.130
97Zadanie 5.140
99Zadanie 5.142
99Zadanie 18
102Zadanie 19
102Zadanie 20
102Zadanie 21
102Zadanie 24
103Zadanie 25
103