Wyznacz pole powierzchni całkowitej ostrosłupa, którego podstawą jest trójkąt równoboczny ABC, krawędź boczna CS jest prostopadła do płaszczyzny podstawy ostrosłupa, kąt nachylenia ściany ABS do płaszczyzny podstawy ma 60°, a objętość ostrosłupa jest równa
.
Skorzystaj z tego, że trójkąt równobocznego o boku
można obliczyć ze wzoru
, a wysokość
. Następnie zauważ, że trójkąt prostokątny o kątach
jest szczególny - długość boku naprzeciwko największego kąta jest dwa razy większa od długości boku naprzeciwko najkrótszego kąta, a długość boku naprzeciwko średniego kąta jest
razy dłuższa od długości boku naprzeciwko najmniejszego kąta. Na tej podstawie wyznacz długość krawędzi podstawy i wysokości ostrosłupa. Następnie skorzystaj ze wzoru na objętość, podstaw znane wartości i wyznacz długość krawędzi podstaw. Na koniec z twierdzenia Pitagorasa w trójkącie CFS wyznacz długość przeciwprostokątnej i pole całkowite ostrosłupa.
Zadanie 5.1
78Zadanie 5.2
78Zadanie 5.4
78Zadanie 5.5
78Zadanie 5.6
79Zadanie 5.7
79Zadanie 5.8
79Zadanie 5.35
84Zadanie 5.37
84Zadanie 5.39
84Zadanie 5.40
84Zadanie 5.41
85Zadanie 5.42
85Zadanie 5.45
85Zadanie 5.46
85Zadanie 5.47
86Zadanie 5.50
86Zadanie 5.53
86Zadanie 5.55
87Zadanie 5.56
87Zadanie 5.57
87Zadanie 5.58
87Zadanie 5.60
87Zadanie 5.62
87Zadanie 5.63
88Zadanie 5.64
88Zadanie 5.65
88Zadanie 5.66
88Zadanie 5.67
88Zadanie 5.68
88Zadanie 5.69
88Zadanie 5.70
88Zadanie 5.71
89Zadanie 5.72
89Zadanie 5.73
89Zadanie 5.74
89Zadanie 5.75
89Zadanie 5.76
89Zadanie 5.77
90Zadanie 5.78
90Zadanie 5.79
90Zadanie 5.80
90Zadanie 5.81
91Zadanie 5.82
91Zadanie 5.83
91Zadanie 5.85
91Zadanie 5.86
92Zadanie 5.87
92Zadanie 5.88
92Zadanie 5.100
93Zadanie 5.102
94Zadanie 5.107
94Zadanie 5.112
95Zadanie 5.119
96Zadanie 5.120
96Zadanie 5.122
96Zadanie 5.127
97Zadanie 5.130
97Zadanie 5.140
99Zadanie 5.142
99Zadanie 18
102Zadanie 19
102Zadanie 20
102Zadanie 21
102Zadanie 24
103Zadanie 25
103