W tym zadaniu wyznacz takie wartości
, dla których szereg geometryczny ma sumę mniejszą od
.
Odpowiedź: .
Wyznacz powyższą sumę:
Zapisz potrzebne założenia:
Skorzystaj z wzoru na sumę:
Zatem rozwiąż nierówność:
Podstaw za , dla ułatwienia obliczeń, a następnie rozwiąż równanie kwadratowe:
Zatem otrzymałeś:
Wynika stąd, że:
Zadanie 1.4.
279Zadanie 1.5.
279Zadanie 1.6.
279Zadanie 1.8.
279Zadanie 1.9.
280Zadanie 1.11.
280Zadanie 1.12.
280Zadanie 1.13.
280Zadanie 1.15.
280Zadanie 1.16.
280Zadanie 1.17.
281Zadanie 1.18.
281Zadanie 1.19.
281Zadanie 1.20.
281Zadanie 2.
281Zadanie 4.
281Zadanie 2.4.
285Zadanie 2.5.
286Zadanie 2.6.
286Zadanie 2.7.
286Zadanie 2.8.
286Zadanie 2.10.
286Zadanie 2.11.
286Zadanie 2.12.
286Zadanie 3.4.
295Zadanie 3.5.
295Zadanie 3.6.
295Zadanie 3.7.
295Zadanie 3.8.
295Zadanie 3.9.
296Zadanie 3.10.
296Zadanie 3.13.
296Zadanie 3.14.
297Zadanie 2.
297Zadanie 4.6.
304Zadanie 4.7.
304Zadanie 4.8.
304Zadanie 4.9.
304Zadanie 4.10.
305Zadanie 4.11.
305Zadanie 4.12.
305Zadanie 2.
306Zadanie 5.5.
312Zadanie 5.6.
312Zadanie 5.7.
313Zadanie 5.8.
313Zadanie 5.11.
313Zadanie 5.12.
314Zadanie 5.14.
314Zadanie 5.15.
314Zadanie 6.5.
323Zadanie 6.13.
324Zadanie 7.4.
333Zadanie 7.5.
333Zadanie 7.6.
333Zadanie 7.7.
333Zadanie 7.8.
334Zadanie 7.10.
334Zadanie 8.4.
342Zadanie 8.5.
342Zadanie 8.6.
342Zadanie 8.7.
343Zadanie 8.8.
343Zadanie 9.4.
353Zadanie 9.7.
353Zadanie 9.8.
353Zadanie 9.16.
355Zadanie 27.
368Zadanie 28.
368Zadanie 29.
368Zadanie 30.
368Zadanie 32.
368