W tym zadaniu podaj, ile wynosi pole figury ograniczonej parabolą o równaniu i osią odciętych, wiedząc, że wpisana została w prostokąt o największym możliwym polu.
Odpowiedź: Pole wynosi .
Z treści zadania wiesz, że:
Wyznacz oś symetrii tej paraboli:
Zatem jest to prosta .
Możesz zauważyć, że:
Zapisz potrzebne założenie:
Więc:
Wyznacz wysokość tego prostokąta:
Wyznacz pole tego prostokąta:
Sprawdź kiedy , czyli kiedy funkcja jest rosnąca:
Wyznacz ekstremum tej funkcji:
Wiesz, że , zatem:
Na podstawie wcześniejszych obliczeń możesz zauważyć, że dla funkcja osiąga maksimum. Wyznacz pole tego prostokąta:
Zadanie 1.4.
279Zadanie 1.5.
279Zadanie 1.6.
279Zadanie 1.8.
279Zadanie 1.9.
280Zadanie 1.11.
280Zadanie 1.12.
280Zadanie 1.13.
280Zadanie 1.15.
280Zadanie 1.16.
280Zadanie 1.17.
281Zadanie 1.18.
281Zadanie 1.19.
281Zadanie 1.20.
281Zadanie 2.
281Zadanie 4.
281Zadanie 2.4.
285Zadanie 2.5.
286Zadanie 2.6.
286Zadanie 2.7.
286Zadanie 2.8.
286Zadanie 2.10.
286Zadanie 2.11.
286Zadanie 2.12.
286Zadanie 3.4.
295Zadanie 3.5.
295Zadanie 3.6.
295Zadanie 3.7.
295Zadanie 3.8.
295Zadanie 3.9.
296Zadanie 3.10.
296Zadanie 3.13.
296Zadanie 3.14.
297Zadanie 2.
297Zadanie 4.6.
304Zadanie 4.7.
304Zadanie 4.8.
304Zadanie 4.9.
304Zadanie 4.10.
305Zadanie 4.11.
305Zadanie 4.12.
305Zadanie 2.
306Zadanie 5.5.
312Zadanie 5.6.
312Zadanie 5.7.
313Zadanie 5.8.
313Zadanie 5.11.
313Zadanie 5.12.
314Zadanie 5.14.
314Zadanie 5.15.
314Zadanie 6.5.
323Zadanie 6.13.
324Zadanie 7.4.
333Zadanie 7.5.
333Zadanie 7.6.
333Zadanie 7.7.
333Zadanie 7.8.
334Zadanie 7.10.
334Zadanie 8.4.
342Zadanie 8.5.
342Zadanie 8.6.
342Zadanie 8.7.
343Zadanie 8.8.
343Zadanie 9.4.
353Zadanie 9.7.
353Zadanie 9.8.
353Zadanie 9.16.
355Zadanie 27.
368Zadanie 28.
368Zadanie 29.
368Zadanie 30.
368Zadanie 32.
368