W tym zadaniu masz wskazać jakiego typu jest trójkąt o bokach
Mamy trójkąt o bokach .
Najpierw uporządkujmy te długości tak, aby
było najdłuższym bokiem: .
Z twierdzenia cosinusów:
,.
Więc prawidłowa odpowiedź to opcja C. Trójkąt jest rozwartokątny.
W celu rozwiązania tego zadania, wykorzystaliśmy twierdzenie cosinusów, które mówi, że w dowolnym trójkącie o bokach ,
i
oraz kącie naprzeciwko boku zachodzi:
W tym zadaniu znamy długości boków, a nie znamy kątów. Twierdzenie to pozwoliło nam znaleźć przedział wielkości kąta. Na tej podstawie ustaliliśmy, że trójkąt jest rozwartokątny.
Zadanie 1.5
14Zadanie 1.7
14Zadanie 1.12
15Zadanie 2.4
21Zadanie 2.8
21Zadanie 2.9
21Zadanie 3.9
31Zadanie 4.4
44Zadanie 4.7
45Zadanie 4.8
45Zadanie 4.9
45Zadanie 4.10
45Zadanie 4.11
45Zadanie 4.12
45Zadanie 4.13
45Zadanie 4.14
45Zadanie 4.15
46Zadanie 4.16
46Zadanie Prosto do matury - 3
30Zadanie 5.4
55Zadanie 5.10
56Zadanie 5.11
56Zadanie 5.12
56Zadanie 5.13
56Zadanie 5.15
56Zadanie 6.4
63Zadanie 6.5
63Zadanie 6.6
65Zadanie 6.7
65Zadanie 6.8
65Zadanie 6.10
65Zadanie 6.12
65Zadanie 6.13
65Zadanie 6.16
65Zadanie 6.19
65Zadanie 6.21
65Zadanie 7.4
103Zadanie 7.5
103Zadanie 7.6
103Zadanie 7.8
103Zadanie 7.9
103Zadanie 7.10
103Zadanie 7.11
103Zadanie 7.12
103Zadanie 7.13
103Zadanie 7.14
103Zadanie 7.15
103Zadanie 7.16
103Zadanie 7.17
103Zadanie 7.18
103Zadanie 7.21
103Zadanie 8.11
86Zadanie 8.12
86Zadanie 9.4
95Zadanie 9.5
95Zadanie 9.6
95Zadanie 9.7
95Zadanie 9.8
96Zadanie 9.9
96Zadanie 9.26
97Zadanie 10.35
101Zadanie 10.62
103Zadanie 10.69
104Zadanie 10.71
104Zadanie 10.72
104