W tym zadaniu masz udowodnić, że dla każdego kąta
podana równość jest tożsamością.
W pierwszym kroku wyznaczamy długość przeciwprostokątnej za pomocą twierdzenia Pitagorasa. Następnie obliczamy obwód trójkąta. Kolejnym krokiem jest obliczenie pola powierzchni trójkąta. Ostatecznie, znajdujemy promień okręgu wpisanego w trójkąt, dzieląc pole naszego trójkąta przez pół obwodu tego trójkąta.
Zadanie 1.5
14Zadanie 1.7
14Zadanie 1.12
15Zadanie 2.4
21Zadanie 2.8
21Zadanie 2.9
21Zadanie 3.9
31Zadanie 4.4
44Zadanie 4.7
45Zadanie 4.8
45Zadanie 4.9
45Zadanie 4.10
45Zadanie 4.11
45Zadanie 4.12
45Zadanie 4.13
45Zadanie 4.14
45Zadanie 4.15
46Zadanie 4.16
46Zadanie Prosto do matury - 3
30Zadanie 5.4
55Zadanie 5.10
56Zadanie 5.11
56Zadanie 5.12
56Zadanie 5.13
56Zadanie 5.15
56Zadanie 6.4
63Zadanie 6.5
63Zadanie 6.6
65Zadanie 6.7
65Zadanie 6.8
65Zadanie 6.10
65Zadanie 6.12
65Zadanie 6.13
65Zadanie 6.16
65Zadanie 6.19
65Zadanie 6.21
65Zadanie 7.4
103Zadanie 7.5
103Zadanie 7.6
103Zadanie 7.8
103Zadanie 7.9
103Zadanie 7.10
103Zadanie 7.11
103Zadanie 7.12
103Zadanie 7.13
103Zadanie 7.14
103Zadanie 7.15
103Zadanie 7.16
103Zadanie 7.17
103Zadanie 7.18
103Zadanie 7.21
103Zadanie 8.11
86Zadanie 8.12
86Zadanie 9.4
95Zadanie 9.5
95Zadanie 9.6
95Zadanie 9.7
95Zadanie 9.8
96Zadanie 9.9
96Zadanie 9.26
97Zadanie 10.35
101Zadanie 10.62
103Zadanie 10.69
104Zadanie 10.71
104Zadanie 10.72
104