Zadanie polega na wyznaczeniu miary kąta korzystając z tablic trygonometrycznych, z dokładnością do
.
cMusimy wyznaczyć kąt taki, że
i
. Sprawdźmy najpierw gdzie cosinus przyjmuje wartość
. Korzystając z tablicy funkcji trygonometrycznych lub kalkulatora, uzyskujemy
. Jednakże, dla
powinien przyjąć wartość
. Zatem
.
Korzystając z tablic funkcji trygonometrycznych lub kalkulatora, znajdujemy kąt
. Dzięki okresowości funkcji trygonometrycznych, dodajemy lub odejmujemy od lub
tak aby uzyskać odpowiednie wartości funkcji w zadanym zakresie kąta. W ten sposób znajdujemy kąt o podanych własnościach.
Zadanie 1.5
14Zadanie 1.7
14Zadanie 1.12
15Zadanie 2.4
21Zadanie 2.8
21Zadanie 2.9
21Zadanie 3.9
31Zadanie 4.4
44Zadanie 4.7
45Zadanie 4.8
45Zadanie 4.9
45Zadanie 4.10
45Zadanie 4.11
45Zadanie 4.12
45Zadanie 4.13
45Zadanie 4.14
45Zadanie 4.15
46Zadanie 4.16
46Zadanie Prosto do matury - 3
30Zadanie 5.4
55Zadanie 5.10
56Zadanie 5.11
56Zadanie 5.12
56Zadanie 5.13
56Zadanie 5.15
56Zadanie 6.4
63Zadanie 6.5
63Zadanie 6.6
65Zadanie 6.7
65Zadanie 6.8
65Zadanie 6.10
65Zadanie 6.12
65Zadanie 6.13
65Zadanie 6.16
65Zadanie 6.19
65Zadanie 6.21
65Zadanie 7.4
103Zadanie 7.5
103Zadanie 7.6
103Zadanie 7.8
103Zadanie 7.9
103Zadanie 7.10
103Zadanie 7.11
103Zadanie 7.12
103Zadanie 7.13
103Zadanie 7.14
103Zadanie 7.15
103Zadanie 7.16
103Zadanie 7.17
103Zadanie 7.18
103Zadanie 7.21
103Zadanie 8.11
86Zadanie 8.12
86Zadanie 9.4
95Zadanie 9.5
95Zadanie 9.6
95Zadanie 9.7
95Zadanie 9.8
96Zadanie 9.9
96Zadanie 9.26
97Zadanie 10.35
101Zadanie 10.62
103Zadanie 10.69
104Zadanie 10.71
104Zadanie 10.72
104