W tym zadaniu wskaż, ile osi symetrii ma figura, która jest sumą dwóch prostych. Weź pod uwagę różne opcje.
Odpowiedź: Podana figura ma dwie lub nieskończenie wiele osi symetrii.
Rozważ przypadki:
- proste przecinające się: dwie osie, każda przechodzi przez punkt przecięcia i są do siebie prostopadłe,
- proste równoległe niepokrywające się: nieskończenie wiele osi symetrii przecina je obie prostopadle w dowolnym punkcie,
- proste nakrywające: nieskończenie wiele osi symetrii w dowolnym punkcie jako prostopadłe do danej.
Zadanie 1.5
111Zadanie 1.6
111Zadanie 1.7
111Zadanie 1.8
111Zadanie 1.9
111Zadanie 1.10
111Zadanie 1.11
112Zadanie 1.12
112Zadanie 1.13
112Zadanie 1.14
112Zadanie 1.18
112Zadanie 1.19
112Zadanie 1.20
113Zadanie 1.21
113Zadanie 1.22
113Zadanie 1.23
113Zadanie 1.26
113Zadanie 2.4
121Zadanie 2.5
121Zadanie 2.6
121Zadanie 2.7
122Zadanie 2.8
122Zadanie 2.9
122Zadanie 2.10
122Zadanie 2.11
122Zadanie 2.14
122Zadanie 2.16
123Zadanie 3.4
134Zadanie 3.5
134Zadanie 3.6
134Zadanie 3.7
134Zadanie 3.8
134Zadanie 3.10
134Zadanie 3.15
135Zadanie 3.17
135Zadanie 3.19
135Zadanie 3.20
135Zadanie 3.25
136Zadanie 4.4
144Zadanie 4.5
144Zadanie 4.6
144Zadanie 4.7
144Zadanie 4.9
145Zadanie 4.10
145Zadanie 4.11
145Zadanie 4.12
145Zadanie 4.15
145Zadanie 4.19
145Zadanie 4.22
146Zadanie 5.5
156Zadanie 5.6
156Zadanie 5.7
157Zadanie 5.14
157Zadanie 5.25
158Zadanie 5.26
158Zadanie 5.27
158Zadanie 5.29
159Zadanie 5.30
159Zadanie 6.6
168Zadanie 6.7
168Zadanie 6.10
168Zadanie 6.11
168Zadanie 6.14
169Zadanie 6.17
169Zadanie 6.18
169Zadanie 6.19
169Zadanie 6.22.
170Zadanie 6.23.
170Zadanie 7.4.
176Zadanie 7.5.
176Zadanie 7.6.
176Zadanie 7.8.
176Zadanie 7.9.
177Zadanie 7.11.
177Zadanie 7.13.
178Zadanie 7.14.
178Zadanie 7.15.
178Zadanie 7.18.
178Zadanie 7.19.
179Zadanie 39.
184Zadanie 40.
184Zadanie 41.
185Zadanie 42.
185Zadanie 43.
185Zadanie 44.
185Zadanie 54.
186Zadanie 68.
187Zadanie 73.
188