W tym zadaniu podaj taką liczbę
, żeby ciąg
był ciągiem arytmetycznym.
dla wszystkich
i
Odpowiedź: Liczba
wynosi 28.
Przypomnij sobie, że w ciągu arytmetycznym
zachodzi zależność dla :
dla wszystkich
i
.
W szczególności warunek ten zachodzi pomiędzy trzema sąsiednimi wyrazami. Załóż, że:
Wynika stąd, że:
Zadanie 1.5.
199Zadanie 1.6.
199Zadanie 1.7.
199Zadanie 1.9.
200Zadanie 1.10.
200Zadanie 1.11.
200Zadanie 1.12.
200Zadanie 1.13.
200Zadanie 1.14.
201Zadanie 1.18.
201Zadanie 1.19.
201Zadanie 1.20.
201Zadanie 1.21.
201Zadanie 1.22.
202Zadanie 1.24.
202Zadanie 1.26.
202Zadanie 1.27.
202Zadanie 1.28.
202Zadanie 1.30.
202Zadanie 1.31.
203Zadanie 1.32.
203Zadanie 1.33.
203Zadanie 1.34.
203Zadanie 2.6.
211Zadanie 2.7.
212Zadanie 2.8.
212Zadanie 2.9.
212Zadanie 2.10.
212Zadanie 2.11.
212Zadanie 2.21.
213Zadanie 2.24.
213Zadanie 2.26.
214Zadanie 2.27.
214Zadanie 2.29.
214Zadanie 2.30.
214Zadanie 2.35.
214Zadanie 3.5.
220Zadanie 3.6.
220Zadanie 3.8.
221Zadanie 3.9.
221Zadanie 3.13.
221Zadanie 3.16.
221Zadanie 3.17.
222Zadanie 3.31.
223Zadanie 4.6.
231Zadanie 4.7.
232Zadanie 4.8.
232Zadanie 4.9.
232Zadanie 4.10.
232Zadanie 4.12.
232Zadanie 4.13.
232Zadanie 4.22.
233Zadanie 5.4.
238Zadanie 5.5.
239Zadanie 5.7.
239Zadanie 5.8.
239Zadanie 5.18.
240Zadanie 5.19.
241Zadanie 6.6.
253Zadanie 6.14.
254Zadanie 6.19.
255Zadanie 6.21.
255Zadanie 6.22.
255Zadanie 3.
256Zadanie 37.
261Zadanie 38.
261Zadanie 40.
262Zadanie 41.
262Zadanie 42.
262Zadanie 43.
262Zadanie 47.
262Zadanie 53.
263Zadanie 60.
264Zadanie 73.
265Zadanie 86.
266