Udowodnij, że trójkąt ABC jest równoramienny, jeśli proste zawierające wysokości AE i BF trójkąta ABC przecinają się w punkcie H. Wiadomo, że |AH|=BH∨.
Trójkąt ABH jest równoramienny.
∢HAB=∢HBA=αTrójkąty ADB i AEB są prostokątne, a suma miar kątów w trójkącie wynosi 180o:∢ADB=∢AEB=90o∢BAD=180o−90o−α=90o−α=∢EBATrójkąt ABC jest równoramienny, ponieważ ∢BAC=∢CBA
To kończy dowód.
Zadanie 1.1.
Zadanie 1.2.
Zadanie 1.3.
Zadanie 1.4.
Zadanie 1.5.
Zadanie 1.6.
Zadanie 1.7.
Zadanie 1.8.
Zadanie 1.9.
Zadanie 1.10.
Zadanie 1.11.
Zadanie 1.12.
Zadanie 1.13.
Zadanie 1.14.
Zadanie 1.15.
Zadanie 1.16.
Zadanie 1.17.
Zadanie 1.18.
Zadanie 1.19.
Podpunkt a)
Podpunkt b)
Zadanie 1.20.
Zadanie 1.21.
Zadanie 1.22.
Zadanie 1.23.
Zadanie 1.24.
Zadanie 1.25.
Zadanie 1.26.
Zadanie 1.27.
Zadanie 1.28.
Zadanie 1.29.
Zadanie 1.30.
Zadanie 1.31.
Zadanie 1.32.
Zadanie 1.33.
Zadanie 1.34.
Zadanie 1.35.
Zadanie 1.36.
Zadanie 1.37.
Zadanie 1.38.
Zadanie 1.39.
Zadanie 1.40.
Zadanie 2.1.
Zadanie 2.2.
Zadanie 2.3.
Zadanie 2.4.
Zadanie 2.5.
Zadanie 2.6.
Zadanie 2.7.
Zadanie 2.8.
Zadanie 2.9.
Zadanie 2.10.
Zadanie 2.11.
Zadanie 2.12.
Zadanie 2.13.
Zadanie 2.14.
Zadanie 2.15.
Zadanie 2.16.
Zadanie 2.17.
Zadanie 2.18.
Zadanie 2.19.
Zadanie 2.20.
Zadanie 2.21.
Zadanie 2.22.
Zadanie 2.23.
Zadanie 2.24.
Zadanie 2.25.
Zadanie 2.26.
Zadanie 2.27.
Zadanie 2.28.
Zadanie 2.29.
Zadanie 2.30.
Zadanie 2.31.
Zadanie 2.32.
Zadanie 2.33.
Zadanie 2.34.
Zadanie 2.35.
Zadanie 2.36.
Zadanie 2.37.
Zadanie 2.38.
Zadanie 2.39.
Zadanie 2.40.
Zadanie 2.41.
Zadanie 2.42.
Zadanie 2.43.
Zadanie 2.44.