Udowodnij, że dla dodatnich liczb rzeczywistych x,y takich, że xy>3, prawdziwa jest nierówność x4+y4≥18.
x4+y4≥18x4+2x2y2+y4≥18−2x2y2(x2+y2)2≥18−2(xy)2(x2+y2)2≥18−2⋅32(x2+y2)2≥0
Kwadrat sumy dwóch dowolnych liczb rzeczywistych jest zawsze nieujemny.
To kończy dowód.
Zadanie 1.1.
Zadanie 1.2.
Zadanie 1.3.
Zadanie 1.4.
Zadanie 1.5.
Zadanie 1.6.
Zadanie 1.7.
Zadanie 1.8.
Zadanie 1.9.
Zadanie 1.10.
Zadanie 1.11.
Zadanie 1.12.
Zadanie 1.13.
Zadanie 1.14.
Zadanie 1.15.
Zadanie 1.16.
Zadanie 1.17.
Zadanie 1.18.
Zadanie 1.19.
Podpunkt a)
Podpunkt b)
Zadanie 1.20.
Zadanie 1.21.
Zadanie 1.22.
Zadanie 1.23.
Zadanie 1.24.
Zadanie 1.25.
Zadanie 1.26.
Zadanie 1.27.
Zadanie 1.28.
Zadanie 1.29.
Zadanie 1.30.
Zadanie 1.31.
Zadanie 1.32.
Zadanie 1.33.
Zadanie 1.34.
Zadanie 1.35.
Zadanie 1.36.
Zadanie 1.37.
Zadanie 1.38.
Zadanie 1.39.
Zadanie 1.40.
Zadanie 2.1.
Zadanie 2.2.
Zadanie 2.3.
Zadanie 2.4.
Zadanie 2.5.
Zadanie 2.6.
Zadanie 2.7.
Zadanie 2.8.
Zadanie 2.9.
Zadanie 2.10.
Zadanie 2.11.
Zadanie 2.12.
Zadanie 2.13.
Zadanie 2.14.
Zadanie 2.15.
Zadanie 2.16.
Zadanie 2.17.
Zadanie 2.18.
Zadanie 2.19.
Zadanie 2.20.
Zadanie 2.21.
Zadanie 2.22.
Zadanie 2.23.
Zadanie 2.24.
Zadanie 2.25.
Zadanie 2.26.
Zadanie 2.27.
Zadanie 2.28.
Zadanie 2.29.
Zadanie 2.30.
Zadanie 2.31.
Zadanie 2.32.
Zadanie 2.33.
Zadanie 2.34.
Zadanie 2.35.
Zadanie 2.36.
Zadanie 2.37.
Zadanie 2.38.
Zadanie 2.39.
Zadanie 2.40.
Zadanie 2.41.
Zadanie 2.42.
Zadanie 2.43.
Zadanie 2.44.