Udowodnij, że liczba 6100−2⋅699+10⋅698 jest podzielna przez 17.
6100−2⋅699+10⋅698=698⋅(62−2⋅61+10⋅60)=698⋅(36−12+10)=698⋅34=698⋅2⋅17=17k,k∈C
Iloczyn dowolnej liczby z liczbą 17 jest zawsze podzielny przez 17, więc podana liczba dzieli się przez 17.
To kończy dowód.
Zadanie 1.1.
Zadanie 1.2.
Zadanie 1.3.
Zadanie 1.4.
Zadanie 1.5.
Zadanie 1.6.
Zadanie 1.7.
Zadanie 1.8.
Zadanie 1.9.
Zadanie 1.10.
Zadanie 1.11.
Zadanie 1.12.
Zadanie 1.13.
Zadanie 1.14.
Zadanie 1.15.
Zadanie 1.16.
Zadanie 1.17.
Zadanie 1.18.
Zadanie 1.19.
Podpunkt a)
Podpunkt b)
Zadanie 1.20.
Zadanie 1.21.
Zadanie 1.22.
Zadanie 1.23.
Zadanie 1.24.
Zadanie 1.25.
Zadanie 1.26.
Zadanie 1.27.
Zadanie 1.28.
Zadanie 1.29.
Zadanie 1.30.
Zadanie 1.31.
Zadanie 1.32.
Zadanie 1.33.
Zadanie 1.34.
Zadanie 1.35.
Zadanie 1.36.
Zadanie 1.37.
Zadanie 1.38.
Zadanie 1.39.
Zadanie 1.40.
Zadanie 2.1.
Zadanie 2.2.
Zadanie 2.3.
Zadanie 2.4.
Zadanie 2.5.
Zadanie 2.6.
Zadanie 2.7.
Zadanie 2.8.
Zadanie 2.9.
Zadanie 2.10.
Zadanie 2.11.
Zadanie 2.12.
Zadanie 2.13.
Zadanie 2.14.
Zadanie 2.15.
Zadanie 2.16.
Zadanie 2.17.
Zadanie 2.18.
Zadanie 2.19.
Zadanie 2.20.
Zadanie 2.21.
Zadanie 2.22.
Zadanie 2.23.
Zadanie 2.24.
Zadanie 2.25.
Zadanie 2.26.
Zadanie 2.27.
Zadanie 2.28.
Zadanie 2.29.
Zadanie 2.30.
Zadanie 2.31.
Zadanie 2.32.
Zadanie 2.33.
Zadanie 2.34.
Zadanie 2.35.
Zadanie 2.36.
Zadanie 2.37.
Zadanie 2.38.
Zadanie 2.39.
Zadanie 2.40.
Zadanie 2.41.
Zadanie 2.42.
Zadanie 2.43.
Zadanie 2.44.