Wykaż, że dla dowolnych liczb rzeczywistych x,y,z prawdziwa jest nierówność x2+y2+z2−xy−yz−zx≥0.
x2+y2+z2−xy−yz−zx≥012x2−xy+12y2+12x2−xz+12z2+12y2−yz+12z2≥0(22x−22y)2+(22x−22z)2+(22y−22z)2≥0
Kwadrat różnicy dwóch dowolnych liczb rzeczywistych jest zawsze nieujemny, więc suma trzech liczb nieujemnych jest zawsze nieujemna.
To kończy dowód.
Zadanie 1.1.
Zadanie 1.2.
Zadanie 1.3.
Zadanie 1.4.
Zadanie 1.5.
Zadanie 1.6.
Zadanie 1.7.
Zadanie 1.8.
Zadanie 1.9.
Zadanie 1.10.
Zadanie 1.11.
Zadanie 1.12.
Zadanie 1.13.
Zadanie 1.14.
Zadanie 1.15.
Zadanie 1.16.
Zadanie 1.17.
Zadanie 1.18.
Zadanie 1.19.
Podpunkt a)
Podpunkt b)
Zadanie 1.20.
Zadanie 1.21.
Zadanie 1.22.
Zadanie 1.23.
Zadanie 1.24.
Zadanie 1.25.
Zadanie 1.26.
Zadanie 1.27.
Zadanie 1.28.
Zadanie 1.29.
Zadanie 1.30.
Zadanie 1.31.
Zadanie 1.32.
Zadanie 1.33.
Zadanie 1.34.
Zadanie 1.35.
Zadanie 1.36.
Zadanie 1.37.
Zadanie 1.38.
Zadanie 1.39.
Zadanie 1.40.
Zadanie 2.1.
Zadanie 2.2.
Zadanie 2.3.
Zadanie 2.4.
Zadanie 2.5.
Zadanie 2.6.
Zadanie 2.7.
Zadanie 2.8.
Zadanie 2.9.
Zadanie 2.10.
Zadanie 2.11.
Zadanie 2.12.
Zadanie 2.13.
Zadanie 2.14.
Zadanie 2.15.
Zadanie 2.16.
Zadanie 2.17.
Zadanie 2.18.
Zadanie 2.19.
Zadanie 2.20.
Zadanie 2.21.
Zadanie 2.22.
Zadanie 2.23.
Zadanie 2.24.
Zadanie 2.25.
Zadanie 2.26.
Zadanie 2.27.
Zadanie 2.28.
Zadanie 2.29.
Zadanie 2.30.
Zadanie 2.31.
Zadanie 2.32.
Zadanie 2.33.
Zadanie 2.34.
Zadanie 2.35.
Zadanie 2.36.
Zadanie 2.37.
Zadanie 2.38.
Zadanie 2.39.
Zadanie 2.40.
Zadanie 2.41.
Zadanie 2.42.
Zadanie 2.43.
Zadanie 2.44.