Wykaż, że dla dowolnych liczb rzeczywistych x,y prawdziwa jest nierówność |x|+|y|2≥|xy|.
|x|+|y|2≥|xy||x|+|y|≥2|xy|x2+2|xy|+y2≥4|xy|x2−2|xy|+y2≥0(|x|−|y|)2≥0
Kwadrat różnicy dwóch dowolnych liczb rzeczywistych jest zawsze nieujemny.
To kończy dowód.
Zadanie 1.1.
Zadanie 1.2.
Zadanie 1.3.
Zadanie 1.4.
Zadanie 1.5.
Zadanie 1.6.
Zadanie 1.7.
Zadanie 1.8.
Zadanie 1.9.
Zadanie 1.10.
Zadanie 1.11.
Zadanie 1.12.
Zadanie 1.13.
Zadanie 1.14.
Zadanie 1.15.
Zadanie 1.16.
Zadanie 1.17.
Zadanie 1.18.
Zadanie 1.19.
Podpunkt a)
Podpunkt b)
Zadanie 1.20.
Zadanie 1.21.
Zadanie 1.22.
Zadanie 1.23.
Zadanie 1.24.
Zadanie 1.25.
Zadanie 1.26.
Zadanie 1.27.
Zadanie 1.28.
Zadanie 1.29.
Zadanie 1.30.
Zadanie 1.31.
Zadanie 1.32.
Zadanie 1.33.
Zadanie 1.34.
Zadanie 1.35.
Zadanie 1.36.
Zadanie 1.37.
Zadanie 1.38.
Zadanie 1.39.
Zadanie 1.40.
Zadanie 2.1.
Zadanie 2.2.
Zadanie 2.3.
Zadanie 2.4.
Zadanie 2.5.
Zadanie 2.6.
Zadanie 2.7.
Zadanie 2.8.
Zadanie 2.9.
Zadanie 2.10.
Zadanie 2.11.
Zadanie 2.12.
Zadanie 2.13.
Zadanie 2.14.
Zadanie 2.15.
Zadanie 2.16.
Zadanie 2.17.
Zadanie 2.18.
Zadanie 2.19.
Zadanie 2.20.
Zadanie 2.21.
Zadanie 2.22.
Zadanie 2.23.
Zadanie 2.24.
Zadanie 2.25.
Zadanie 2.26.
Zadanie 2.27.
Zadanie 2.28.
Zadanie 2.29.
Zadanie 2.30.
Zadanie 2.31.
Zadanie 2.32.
Zadanie 2.33.
Zadanie 2.34.
Zadanie 2.35.
Zadanie 2.36.
Zadanie 2.37.
Zadanie 2.38.
Zadanie 2.39.
Zadanie 2.40.
Zadanie 2.41.
Zadanie 2.42.
Zadanie 2.43.
Zadanie 2.44.