W tym zadaniu musisz rozwiązać układ równań
.
Zatem:
lub
lub
lub
lub
lub
lub
Rozwiążmy układ równań metodą podstawiania. Z pierwszego równania wyznaczamy y:
Korzystając z równości
w drugim równaniu, w miejsce y podstawiamy
:
Rozwiązujemy drugie równanie z układu równań. Równanie
jest w postaci
, więc możemy policzyć jego rozwiązania za pomocą wyróżnika równania kwadratowego
, który jest określony wzorem
.
Jeżeli
, to równanie ma dwa rozwiązania:
Jeżeli
, to równanie ma jedno rozwiązanie:
Jeżeli
, to równanie nie ma rozwiązań.
Współczynniki liczbowe równania
to:
Zatem:
, więc równanie ma dwa rozwiązania:
Podstawiamy wyznaczone wartości x do układu i obliczamy y:
lub
lub
lub
lub
lub
lub
Ćwiczenie A.
186Ćwiczenie C.
187Przykład 1.
187Przykład 2.
188Zadanie 1.
188Zadanie 3.
189Zadanie 4.
189Ćwiczenie A.
190Ćwiczenie B.
29Przykład 2.
192Zadanie 1.
193Zadanie 2.
193Zadanie 3.
193Zadanie 4.
193Zadanie 5.
193Zadanie 6.
193Zadanie 7.
193Zadanie 8.
193Zadanie 9.
194Zadanie 14.
194Ćwiczenie A.
196Przykład 1.
197Przykład 2.
197Zadanie 1.
198Zadanie 4.
198Zadanie 5.
199Zadanie 6.
199Zadanie 8.
199Zadanie 10.
199Zadanie 1.
200Zadanie 2.
200Zadanie 3.
200Zadanie 4.
200Zadanie 8.
200Zadanie 9.
200Zadanie 10.
200Zadanie 11.
200