W tym zadaniu musisz obliczyć sumę kwadratów rozwiązań równania
, korzystając ze wzorów Viete’a.
Zatem:
Suma kwadratów rozwiązań równania
wynosi
.
Najpierw sprawdzamy, czy równanie
ma dwa rozwiązania, obliczając jego deltę.
Współczynniki liczbowe równania
to:
Zatem:
, więc równanie ma dwa rozwiązania.
Ze wzorów Viete’a wiemy, że jeśli równanie kwadratowe
, gdzie
, ma dwa rozwiązania
i
, to:
Zapisujemy sumę kwadratów rozwiązań w takiej postaci, aby dało się w niej zastosować wzory Viete’a:
Sumę
możemy zapisać jako
, ponieważ:
Ćwiczenie A.
186Ćwiczenie C.
187Przykład 1.
187Przykład 2.
188Zadanie 1.
188Zadanie 3.
189Zadanie 4.
189Ćwiczenie A.
190Ćwiczenie B.
29Przykład 2.
192Zadanie 1.
193Zadanie 2.
193Zadanie 3.
193Zadanie 4.
193Zadanie 5.
193Zadanie 6.
193Zadanie 7.
193Zadanie 8.
193Zadanie 9.
194Zadanie 14.
194Ćwiczenie A.
196Przykład 1.
197Przykład 2.
197Zadanie 1.
198Zadanie 4.
198Zadanie 5.
199Zadanie 6.
199Zadanie 8.
199Zadanie 10.
199Zadanie 1.
200Zadanie 2.
200Zadanie 3.
200Zadanie 4.
200Zadanie 8.
200Zadanie 9.
200Zadanie 10.
200Zadanie 11.
200