Przebiegająca przez punkt P prosta k przecina się z prostą m w punkcie P. Prosta k jest styczna do okręgu w punkcie A, a prosta m przecina ten okrąg w punktach B i C (jak przedstawiono na rysunku). Udowodnij, że kąt PAC jest równy kątowi ABP.
Przyjmij oznaczenia jak na rysunku. Kąt OAP jest prosty, bo prosta k jest styczna do okręgu.
Kąt
to kąt wpisany, a kąt AOC to kąt środkowy i oba są opisane na tym samym łuku CA, co oznacza, że
.
Trójkąt COA jest równoramienny, czyli kąty przy jego podstawie są równe.
Oblicz miarę kąta PAC jako sumę miar kątów PAO i OAC.
Oblicz miarę kąt ABP, wiedząc, że kąty ABP i
są przyległe.
Zadanie 1.
154Zadanie 2.
154Zadanie 4.
154Zadanie 5.
154Zadanie 7.
154Zadanie 9.
154Zadanie 14.
155Zadanie 20.
156Zadanie 24.
156Zadanie 26.
156Zadanie 1.
157Zadanie 2.
157Zadanie 3.
157Zadanie 7.
158Zadanie 15.
158Zadanie 17.
162Zadanie 1.
163Zadanie 2.
163Zadanie 3.
163Zadanie 4.
163Zadanie 5.
164Zadanie 6.
164Zadanie 9.
164Zadanie 10.
165Zadanie 11.
165Zadanie 14.
167Zadanie 15.
167Zadanie 16.
167Zadanie 5.
168Zadanie 14.
169Zadanie 17.
169Zadanie 1.
171Zadanie 5.
171Zadanie 8.
171Zadanie 9.
171Zadanie 10.
172Zadanie 11.
172Zadanie 12.
172Zadanie 13.
172Zadanie 18.
173Zadanie 20.
173Zadanie 1.
174Zadanie 3.
174Zadanie 5.
174Zadanie 9.
174Zadanie 14.
175Zadanie 17.
175Zadanie 2.
176Zadanie 4.
176Zadanie 5.
176Zadanie 7.
176Zadanie 18.
177Zadanie 1.
178Zadanie 3.
178Zadanie 18.
179Zadanie 19.
179Zadanie 1.
180Zadanie 8.
180Zadanie 15.
181Zadanie 18.
181Zadanie 22.
182Zadanie 31.
182