Zbadaj wzajemne położenie prostej zawierającej przeciwprostokątna trójkąta o przyprostokątnych długości 20 i 48, z okręgiem o promieniu długości 9, który ma punkt wspólny z wierzchołkiem kąta prostego tego trójkąta oraz, którego środek znajduje się na wysokości wychodzącej z tego wierzchołka.
Trójkąt prostokątny:
Okrąg:
Okrąg i prosta są rozłączne.
Korzystając z twierdzenia Pitagorasa wyznacz długość (c) przeciwprostokątnej, a następnie porównując pola tego trójkąta oblicz długość wysokości (h), poprowadzonej z wierzchołka kąta prostego. Zauważ, że jest ona dłuższa od średnicy okręgu, więc wskazana prosta i okrąg nie mają punktów wspólnych.
Zadanie 1.
154Zadanie 2.
154Zadanie 4.
154Zadanie 5.
154Zadanie 7.
154Zadanie 9.
154Zadanie 14.
155Zadanie 20.
156Zadanie 24.
156Zadanie 26.
156Zadanie 1.
157Zadanie 2.
157Zadanie 3.
157Zadanie 7.
158Zadanie 15.
158Zadanie 17.
162Zadanie 1.
163Zadanie 2.
163Zadanie 3.
163Zadanie 4.
163Zadanie 5.
164Zadanie 6.
164Zadanie 9.
164Zadanie 10.
165Zadanie 11.
165Zadanie 14.
167Zadanie 15.
167Zadanie 16.
167Zadanie 5.
168Zadanie 14.
169Zadanie 17.
169Zadanie 1.
171Zadanie 5.
171Zadanie 8.
171Zadanie 9.
171Zadanie 10.
172Zadanie 11.
172Zadanie 12.
172Zadanie 13.
172Zadanie 18.
173Zadanie 20.
173Zadanie 1.
174Zadanie 3.
174Zadanie 5.
174Zadanie 9.
174Zadanie 14.
175Zadanie 17.
175Zadanie 2.
176Zadanie 4.
176Zadanie 5.
176Zadanie 7.
176Zadanie 18.
177Zadanie 1.
178Zadanie 3.
178Zadanie 18.
179Zadanie 19.
179Zadanie 1.
180Zadanie 8.
180Zadanie 15.
181Zadanie 18.
181Zadanie 22.
182Zadanie 31.
182