Udowodnij, że gdy w trójkącie ABC, który jest wpisany w okrąg, poprowadzono dwusieczną kąta przy wierzchołku A, dla której zachodzi
, to prawdziwa jest relacja
Łuki CD i BD są jednakowe, więc |CD| = |BD|
Twierdzenie sinusów w △BDC:
Twierdzenie cosinusów w △BDC:
Najpierw przedłuż dwusieczną kąta BAC tak, aby przecięła okrąg w punkcie D. Zauważ, że miary kątów BAD i BCD oraz DAC i DBC mają równe miary α (są to kąty wpisane oparte na tym samym łuku). Kolejno użyj twierdzenia sinusów i cosinusów, z których wyznacz odpowiednie wielkości.
Zadanie 1.
154Zadanie 2.
154Zadanie 4.
154Zadanie 5.
154Zadanie 7.
154Zadanie 9.
154Zadanie 14.
155Zadanie 20.
156Zadanie 24.
156Zadanie 26.
156Zadanie 1.
157Zadanie 2.
157Zadanie 3.
157Zadanie 7.
158Zadanie 15.
158Zadanie 17.
162Zadanie 1.
163Zadanie 2.
163Zadanie 3.
163Zadanie 4.
163Zadanie 5.
164Zadanie 6.
164Zadanie 9.
164Zadanie 10.
165Zadanie 11.
165Zadanie 14.
167Zadanie 15.
167Zadanie 16.
167Zadanie 5.
168Zadanie 14.
169Zadanie 17.
169Zadanie 1.
171Zadanie 5.
171Zadanie 8.
171Zadanie 9.
171Zadanie 10.
172Zadanie 11.
172Zadanie 12.
172Zadanie 13.
172Zadanie 18.
173Zadanie 20.
173Zadanie 1.
174Zadanie 3.
174Zadanie 5.
174Zadanie 9.
174Zadanie 14.
175Zadanie 17.
175Zadanie 2.
176Zadanie 4.
176Zadanie 5.
176Zadanie 7.
176Zadanie 18.
177Zadanie 1.
178Zadanie 3.
178Zadanie 18.
179Zadanie 19.
179Zadanie 1.
180Zadanie 8.
180Zadanie 15.
181Zadanie 18.
181Zadanie 22.
182Zadanie 31.
182