Zadanie

Udowodnij, że trójkąt PQR jest równoboczny oraz że punkty przecięcia odcinków AQ, BR i CP są wierzchołkami trójkąta równobocznego, jeśli na bokach AB, BC i AC trójkąta równobocznego ABC obrano odpowiednio punkty P, Q i R tak, że .

Rozwiązanie

Zadania z tego działu
Przykłady dowodów w matematyce
177
Dowód nie wprost – warto wiedzieć
181