Wyznacz wysokości obu równoległoboków, jeśli dany jest równoległobok ABCD, o bokach 6 cm i 12 cm, jego krótsza przekątna tworzy z jego krótszym bokiem kąt prosty oraz równoległobok A’B’C’D’ jest podobny do równoległoboku ABCD, a jego krótsza przekątna ma długość
.
Na podstawie poprzedniego podpunktu znasz długości boków, krótszych przekątnych w obu równoległobokach oraz skalę ich podobieństwa.
Zauważ, że pole równoległoboku jest równe iloczynowi jego wysokości i podstawy na którą odpada pod kątem prostym, więc krótsze przekątne obu z równoległoboków będą jednocześnie ich wysokościami.
Zapisz wzór na pole równoległoboku, podstaw znane długości boków i z powstałego równania wyznacz długość drugiej wysokości równoległoboku ABCD.
Następnie zauważ, że odpowiadające sobie odcinki, w tym wysokości w obu figurach są podobne w wyznaczonej skali
. Zapisz te proporcje z szukaną długością wysokości równoległoboku A’B’C’D’ i ją wyznacz.
Zadanie 1
242Ćwiczenie 1
243Ćwiczenie 2
244Zadanie 1
244Zadanie 4
245Zadanie 9
245Ćwiczenie 2
247Ćwiczenie 3
247Ćwiczenie 7
249Zadanie 1
249Zadanie 8
250Zadanie 9
250Ćwiczenie 1
251Ćwiczenie 2
251Ćwiczenie 4
252Ćwiczenie 5
252Ćwiczenie 7
253Zadanie 1
253Zadanie 5
253Zadanie 7
254Ćwiczenie 1
255Ćwiczenie 2
255Ćwiczenie 3
256Ćwiczenie 4
257Ćwiczenie 5
257Zadanie 1
257Zadanie 3
257Zadanie 5
258Zadanie 12
258Zadanie 13
258Ćwiczenie 2
259Ćwiczenie 3
259Ćwiczenie 5
260Zadanie 2
260Zadanie 3
261Zadanie 4
261Zadanie 5
261Zadanie 6
261Zadanie 7
261Zadanie 9
262Zadanie 10
262Zadanie 11
262Zadanie 12
262Zadanie 13
262Zadanie 1
263Zadanie 2
263Zadanie 4
263Ćwiczenie 1
264Ćwiczenie 3
265Ćwiczenie 5
265Ćwiczenie 6
265Zadanie 1
266Zadanie 3
266Zadanie 5
266Zadanie 13
267Zadanie 14
267Ćwiczenie 1
269Zadanie 1
270Zadanie 5
270Zadanie 1
273Zadanie 3
273Zadanie 4
273Zadanie 1
274Zadanie 2
274Zadanie 3
274Zadanie 4
274Zadanie 6
274