Oblicz kąt nachylenia prostej PQ do płaszczyzny , jeśli punkty P i Q leżą po tej samej stronie płaszczyzny . Punkty P’ i Q’ są odpowiednio ich rzutami prostokątnymi na płaszczyznę . Punkty P, Q , P’, Q’ spełniają podane warunki.
Skorzystaj z funkcji cosinus w trójkącie zawierającym różnicę odległości punktów i ich rzutów, aby z powstałego równania wyznaczyć miarę kąta, dla którego cosinus przyjmuje otrzymaną wartość.
Zadanie 1.10.
19Zadanie 1.12.
19Zadanie 1.13.
19Zadanie 2.
20Zadanie 2.4.
27Zadanie 2.8.
27Zadanie 2.11.
28Zadanie 2.12.
28Zadanie 2.14.
28Zadanie 2.15.
29Zadanie 2.16.
29Zadanie 2.17.
29Zadanie 2.18.
29Zadanie 3.4.
34Zadanie 3.5.
34Zadanie 3.6.
35Zadanie 2.
36Zadanie 4.4.
46Zadanie 4.6.
46Zadanie 4.9.
46Zadanie 4.10.
46Zadanie 4.14.
47Zadanie 4.17.
47Zadanie 4.20.
47Zadanie 5.4.
61Zadanie 5.5.
61Zadanie 5.6.
61Zadanie 5.9.
61Zadanie 5.13.
61Zadanie 5.21.
62Zadanie 5.29.
63Zadanie 6.5.
73Zadanie 6.6.
73Zadanie 6.7.
73Zadanie 6.10.
74Zadanie 6.14.
74Zadanie 6.15.
74Zadanie 7.13.
93Zadanie 38.
108Zadanie 56.
110