Wyznacz objętość i pole powierzchni bocznej stożka o kącie rozwarcia i promieniu podstawy równym .
Zauważ, że przekrojem osiowym stożka jest trójkąt równoramienny, o ramionach długości , kącie między nimi oraz podstawie równej . Na tej podstawie z sinusa połowy podanego kąta oblicz długość tworzącej. Następnie skorzystaj z twierdzenia Pitagorasa, w trójkącie zawierającym promień, wysokość i tworzącą stożka, aby obliczyć szukane długości. Na koniec oblicz pole boczne i objętość bryły.
Zadanie 1.10.
19Zadanie 1.12.
19Zadanie 1.13.
19Zadanie 2.
20Zadanie 2.4.
27Zadanie 2.8.
27Zadanie 2.11.
28Zadanie 2.12.
28Zadanie 2.14.
28Zadanie 2.15.
29Zadanie 2.16.
29Zadanie 2.17.
29Zadanie 2.18.
29Zadanie 3.4.
34Zadanie 3.5.
34Zadanie 3.6.
35Zadanie 2.
36Zadanie 4.4.
46Zadanie 4.6.
46Zadanie 4.9.
46Zadanie 4.10.
46Zadanie 4.14.
47Zadanie 4.17.
47Zadanie 4.20.
47Zadanie 5.4.
61Zadanie 5.5.
61Zadanie 5.6.
61Zadanie 5.9.
61Zadanie 5.13.
61Zadanie 5.21.
62Zadanie 5.29.
63Zadanie 6.5.
73Zadanie 6.6.
73Zadanie 6.7.
73Zadanie 6.10.
74Zadanie 6.14.
74Zadanie 6.15.
74Zadanie 7.13.
93Zadanie 38.
108Zadanie 56.
110