W tym zadaniu trzeba ustalić opłatę za udział w loterii, w której szacuje się, że weźmie udział 2000 osób, a zysk organizatorów wyniesie 10 000 zł. Loteria polega na wylosowaniu kuli z pojemnika z 2 kulami czarnymi oraz 8 białymi. Za wylosowanie kuli czarnej wygrana wynosi 100 zł, zaś za wylosowanie kuli białej nie ma nagrody. Kula po wylosowaniu trafia z powrotem do pojemnika
x – opłata za udział w loterii
A – wylosowanie kuli czarnej
B – wylosowanie kuli białej
Więc spośród 2000 osób, najprawdopodobniej:
·
·
Wylosowanie czarnej kuli oznacza stratę dla organizatora 100 – x zł, zaś wylosowanie białej oznacza zysk x zł. Organizator łącznie powinien zyskać 10 000 zł.
Zysk organizatora można obliczyć mnożąc ilość osób, które przegrały przez koszt udziału w loterii i odejmując od tego iloczyn osób, które wygrały i koszt organizatora nagrody dla nich. Jednakże zysk organizatora jest już tu podany, a szukasz kosztu udziału w loterii. Oznacz tę szukaną wartość przez x. Aby oszacować ilość osób, które wygrają i przegrają musisz obliczyć prawdopodobieństwo wygranej i przegranej. Robisz to korzystając z klasycznej definicji prawdopodobieństwa, dzieląc ilość kul wygrywających przez ilość wszystkich kul i analogicznie dla kul przegrywających. Następnie mnożąc ilość osób biorących w loterii przez dane prawdopodobieństwa otrzymasz najbardziej możliwe liczby osób, które wygrają i które przegrają. Mając te informacje możesz ułożyć równanie opisujące zysk organizatora. Zauważ, że dla organizatora przegrana uczestnika jest zyskiem w wysokości ceny losu. Z kolei, gdy gracz wygra 100 zł, to organizator musi wypłacić 100 zł, jednak taki gracz wpłacił wcześniej koszt uczestnictwa w loterii, więc realna strata organizatora wynosi 100 zł pomniejszone o kwotę udziału w loterii. Tak więc zapisując stratę jako ujemny zysk, możesz zysk organizatora w tej sytuacji zapisać jako: -100+x. Oczywiście po prawej stronie równania postaw spodziewany zysk organizatora, czyli 10 000 zł. Otrzymałeś równanie, które musisz po prostu rozwiązać. Wymnóż wszystkie nawiasy i przenieś wiadome na jedną stronę a niewiadome na drugą.
Ćwiczenie A.
43Przykład 1.
43Zadanie 1.
46Zadanie 2.
46Zadanie 4.
46Zadanie 5.
47Zadanie 6.
47Zadanie 7.
47Zadanie 12.
48Zadanie 16.
49Zadanie 18.
49Zadanie 20.
50Zadanie 1.
53Zadanie 2.
53Zadanie 3.
53Zadanie 6.
54Zadanie 7.
54Zadanie 10.
54Ćwiczenie A.
57Zadanie 1.
61Zadanie 2.
61Zadanie 4.
61Zadanie 5.
61Zadanie 7.
62Zadanie 8.
62Zadanie 10.
62Zadanie 11.
62Zadanie 12.
62Zadanie 15.
63Zadanie 17.
63Zadanie 18.
63Zadanie 1.
67Zadanie 2.
67Zadanie 3.
68Zadanie 5.
68Zadanie 12.
69Ćwiczenie A.
70Przykład 2.
73Zadanie 3.
74Zadanie 4.
74Zadanie 5.
75Zadanie 6.
75Zadanie 7.
75Zadanie 8.
75Zadanie 9.
75Zadanie 10.
75Zadanie 11.
76Zadanie 12.
76Zadanie 13.
76Zadanie 15.
77Zadanie 16.
77Zadanie 22.
77Zadanie 23.
78Zadanie 24.
78Zadanie 25.
78Zadanie 1.
81Zadanie 2.
81Zadanie 3.
81Zadanie 4.
81Zadanie 5.
82Zadanie 6.
82Zadanie 7.
82Zadanie 8.
82Zadanie 9.
82Zadanie 10.
83Zadanie 11.
83Zadanie 12.
83Zadanie 1.
84Zadanie 3.
84Zadanie 6.
84Zadanie 7.
84Zadanie 8.
84Zadanie 10.
84